2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA) | 978-1-6654-2705-0/21/$31.00 ©2021 IEEE | DOIL: 10.1109/SEAA53835.2021.00022

2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)

NLP4IP: Natural Language Processing-based

Recommendation Approach for Issues

2" Atif Mashkoor
Johannes Kepler University
Linz, Austria
atif.mashkoor @ jku.at

15" Saad Shafig
Johannes Kepler University
Linz, Austria
saad.shafig@jku.at

Abstract—This paper proposes a recommendation approach
for issues (e.g., a story, a bug, or a task) prioritization based
on natural language processing, called NLP4IP. The proposed
semi-automatic approach takes into account the priority and
story points attributes of existing issues defined by the project
stakeholders and devises a recommendation model capable of
dynamically predicting the rank of newly added or modified
issues. NLP4IP was evaluated on 19 projects from 6 repositories
employing the JIRA issue tracking software with a total of 29,698
issues. A comprehensive benchmark study was also conducted to
compare the performance of various machine learning models.
The results of the study showed an average top@3 accuracy
of 81% and a mean squared error of 2.2 when evaluated on
the validation set. The applicability of the proposed approach
is demonstrated in the form of a JIRA plug-in illustrating
predictions made by the newly developed machine learning
model. The dataset has also been made publicly available in
order to support other researchers working in this domain.

Index Terms—Agile software development, natural language
processing, issues prioritization

I. INTRODUCTION

In agile project management platforms like JIRA! features
(user stories), software enhancements, bugs, tasks, or other
related activities are represented as issues. Product owners
or managers may assign these issues with a story point,
which denotes the effort required for their implementation [1].
Prioritization plays an essential role in ensuring that the most
important issues are addressed in the early releases of a
product. This also contributes towards high-quality products
and better user acceptance [2]. The most important issues
are identified through prioritization, which is mandatory to
complete the release in a sprint. However, some studies,
e.g., [3], [4], have shown a major void between the existing
methodologies and the assumptions made in the agile software
development literature regarding the role of end-users for the
value creation process, the importance of business values for
prioritization, and the role of the prioritization process in
achieving project goals. The researchers in this area urge for
the development of more prioritization approaches to bridge
this gap.

The research reported in this article has been partly funded by the LIT
Artificial Intelligence Lab and the LIT Secure & Correct Systems Lab
supported by the state of Upper Austria.

Uhttps://www.atlassian.com/software/jira

Prioritization

3 Christoph Mayr-Dorn
Johannes Kepler University
Linz, Austria
christoph.mayr-dorn @jku.at

4™ Alexander Egyed
Johannes Kepler University
Linz, Austria
alexander.egyed @jku.at

In this paper, we apply natural language processing (NLP)
for issues prioritization. NLP has been successfully applied
to requirements traceability, assessment, and task allocation in
the past showing promising results [5]-[7]. We believe similar
dividends can be harvested by exploiting NLP in the field
of prioritization. We leverage the implementation of the word
sequences proposed by Coyotl-Morales et al. [8] to understand
the ontology of issues (user stories, tasks, or bugs) for each
project. This implementation is commonly utilized in NLP to
address classification problems in literature. In this fashion,
we address specific challenges related to prioritization, such
as handling a large number of issues, better integration of
stakeholders’ preferences, and an enormous amount of effort
consumption in the prioritization process.

The main contribution of this paper is an NLP-based ma-
chine learning approach (NLP4IP) for generating an approx-
imate rank function for newly added issues by incorporating
priority and effort (measured in terms of story points) attributes
specified previously by project stakeholders. The proposed
approach assists project managers, team leads, lead developers,
etc., in the decision-making process for sprint planning. The
already provided priority attribute of existing issues alone is
not sufficient for the prioritization of newly added issues;
therefore, we supplement it with the effort to generate accurate
recommendations. Unfortunately, both the priority and effort
attributes contain arbitrary and highly subjective values. For
example, a stakeholder may assign one issue in project A the
priority value “critical”. In contrast, another issue of similar
priority can be ranked as “blocker” in project B by another
stakeholder. We resolve this by grouping words of similar
meaning and relative effort distribution for each project into
categories discussed in Section III. In essence, our approach
provides a harmonized ranking value: the priority attribute
coupled with the associated implementation effort (calculated
in terms of story points). Knowing the size of the issue (in
terms of story points) beforehand lets the product owners
better prioritize their releases [9]; thus, story points play a
vital role in affecting the priority of incoming issues. The
resulting rank value of issues — based on our approach —
is aligned with the recommendation of Berander et al. [10],
who suggest assigning requirements a numerical number based
on an ordinal scale determining their priority. Moreover, the
proposed approach can generate the approximate rank for

978-1-6654-2705-0/21/$31.00 ©2021 IEEE 99
DOI 10.1109/SEAA53835.2021.00022

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:34:38 UTC from IEEE Xplore. Restrictions apply.

issues dynamically over the entire course of project evolution.
We also developed a prototype to demonstrate our approach’s
applicability and made the dataset employed in this study
publicly available to the researchers.

To determine the efficacy of the proposed approach, we
evaluate it across a large variety of projects that use the
online software repository JIRA. We believe such repositories
are a reliable and befitting source of obtaining textual issues
and relevant attributes associated with them. Furthermore, the
necessity of training an NLP model is to essentially have
a large dataset, which could easily be extracted from JIRA.
The obtained results showed an accuracy of 81% and a mean
squared error (MSE) of 2.2 when evaluated on the dataset of
all projects combined.

The rest of the paper is organized as follows: Section II
discusses the related work. Section III presents the proposed
approach. The NLP4IP algorithm is presented in Section IV.
Section V demonstrates the implementation of the proposed
approach through a benchmark study. Threats to the validity
of the proposed approach are discussed in Section VI. Finally,
the paper is concluded in Section VII.

II. RELATED WORK

In the past, a few studies have been conducted applying
machine learning to requirements prioritization. For example,
a technique known as CBRank proposed by Perini et al. [11]
generates an approximation function from a set of previously
elicited requirements from stakeholders. The technique is
based on the RankBoost algorithm [11], which computes the
approximation score by learning weak binary classifiers. The
classifiers take elicited requirements and their corresponding
stakeholder preferences (as weights) as input. Results obtained
from the classifiers are compared with the initial weights,
then the weights are readjusted iteratively to minimize the
misclassification loss. The limitation of the approach is its
limited applicability during evolution and continuous rank
updates, i.e., the approach does not perform well when new
requirements are being added or modified in a project.

Tonella et al. [12] used genetic algorithms to obtain users’
knowledge regarding the importance of pair of requirements
and mapping this information with the dependencies enlisted
in requirement documents. The approach was evaluated on
a real software system. The study results show that the
proposed approach performs well when the number of elicited
requirements is within the range of 25-125. Thus, an increase
in cost and effort with the increased number of requirements
tend to become a limitation of this study.

Kanwal et al. [13] proposed an approach to building a
recommender system based on bug report features. Classifiers
including support vector machine (SVM) and naive bayes
(NB) were employed and compared in the study. The approach
was evaluated on the Eclipse project with approx. 1,600
bug reports. Results show that NB outperforms SVM when
trained on categorical features. However, SVM performs better
when trained on textual features due to its ability to handling
high-dimensional features. Nonetheless, a scarce number of

100

bug reports and a limited number of models employed for
comparison affect the generalizability of this study.

A method named EVOLVE proposed by Greer et al. [14]
takes the stakeholders’ priorities and constraints regarding
efforts into account. It employs a genetic algorithm to find the
best possible solution (a release plan) for the decision-makers
to look up to while planning their release. The approach has
been evaluated using a case study containing 20 requirements.
However, the generalization of the proposed solution can not
be evaluated due to the limited set of undertaken requirements.

McZara et al. [15] proposed a requirements prioritization
method called “SNIPR” using NLP and constraint solvers.
The NLP was utilized to identify dependent requirements by
analyzing similarities in the textual features of these require-
ments. The proposed approach was evaluated empirically using
a controlled experiment. In contrast, our approach uses NLP
to vectorize the textual features in issues and uses them as
input to the ML models.

As also observed by Achimugu et al. [16] and Bukhsh
et al. [17], the aforementioned techniques suffer from issues
such as excessive time consumption, continuous rank updates,
incorporating live stakeholders feedback, dependencies among
requirements, potentially fallible results, and lack of fully
production-ready approaches for prioritization. In contrast to
the aforementioned works, which take a set of predefined re-
quirements as input and provide an ordered set of requirements
as output, our work encompasses issues including user stories,
tasks, and bugs. We take the newly added issues as input
and automatically generate their ranks as output. Our work
also addresses the aforementioned limitations by proposing a
production-ready approach comprising an ML model capable
of dynamically generating the predicted rank for an incom-
ing issue, thus solving the issues of time consumption and
continuous rank updates. As user stories in agile software
development are not necessarily dependent on each other [18],
dependencies among requirements are also not an issue here.
Due to the absence of pairwise comparison (existing works
use disagreement measures) and the derivation of the ranked
dataset from projects, we use top@k accuracy and MSE as
evaluation metrics. However, please note that a direct baseline
comparison is not possible due to all these fundamental
differences between our approach and other related works.

III. APPROACH

The NLP4IP approach provides a recommendation model
that can predict an approximated rank whenever an existing
issue is changed or a new issue is added to the project. In
order to support the managers at the issue-reporting time, our
approach takes the textual features of the issue, i.e., title and
description, into account to gain the domain knowledge and
ontology of the project, which ultimately help the machine
learning model to understand the vocabulary specific to the
project. Moreover, the priority and effort (measured in terms
of story points) of issues provided by stakeholders are cou-
pled together while computing the approximated rank in our

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:34:38 UTC from IEEE Xplore. Restrictions apply.

approach, which provides a harmonized ranking value and
ensures stakeholders’ prior preferences throughout the process.

We further analyzed our dataset to understand the most
contributing feature towards “duration to resolution”.> We then
performed RandomForest Regression on the extracted features
obtained from the change history of JIRA issues. Fig. 1
shows the regression results illustrating the top three important
features for predicting duration to resolution. As anticipated,
story points are the most contributing feature for predicting
duration to resolution, affecting the priority, followed by the
number of comments made on each issue and the number of
links each issue has.

Story points . .
NumComments I I

NumissueLinks | 0870320736

W APSTUD

W DOCs
EVG

7070173917 gy FH

= JBDS
JBIDE
KEYCLOAK
MESOS
NEXUS
SERVER
TDP
TDQ
TESB
THORN
TIDOC

4 more

3382594858

0 2 4 6 8

Fig. 1: Important features for duration to resolution

Please note that the approach NLP4IP only considered
issues with previously assigned priority and story point at-
tributes. The NLP4IP approach also caters to continuous rank
updates by retraining the model after each sprint or itera-
tion of the project. Furthermore, we have considered issues
prioritization in agile software development as a multi-class
classification problem to interlink textual issues with labeled
classes. As illustrated in Fig. 2, NLP4IP comprises three main
processes: the derivation of the ranked training dataset, the
training process, and the validation process.

A. Derivation of the ranked training dataset

1) Issues categorization by priority: We measure the pri-
ority of each issue using the priority attribute of JIRA. The
project stakeholders specify the values of the attribute before
the beginning of each sprint. We followed the principles
of the open coding method [19] during the analysis of the
obtained dataset. The open coding method refers to analyzing
the data, developing categories considering the features, and
introducing labeling notions to build up a grounded theory.
The dataset contains multiple values associated with the
priority attribute, e.g., Critical, Major, or Optional. These
values may vary from project to project. To overcome this,
we have grouped the values with similar meaning (syn-
onyms) into simple three generic classes encoded as class
values (0,1,2). Thereby, we have categorized the priority

2Duration to resolution is calculated as the difference between the issue
creation time and the issue resolved time.

101

Derivation of the Ranked Training Dataset %

Issues
categorization
by story
points

\/

| Ranking function |

Issues
categorization
by priority

Training Process Validation Process

k-fold cross
validation

Model evaluation on the
held-out validation set

&

Model training

Fig. 2: Overview of the NLP4IP approach

of issues represented as P(z), where (2,1,0) represents
Classes(z) : High(z=Critical, Blocker, ...), M edium (xz =
Magor, High, ...), Low(z=Optional, Low, ...), respectively.

2 if x = Critical, Blocker, ...
P(z)={1 ifx= Major, High, ...
0 if x = Optional, Low, ...

2) Issues categorization by story points: We measure the
implementation effort of issues in terms of story points. It is es-
sential for product owners and agile managers to know whether
the issue can be included in the current sprint considering the
time frame and workload. Thus story points help in calculating
project velocity. This also enables managers to determine the
issues that can be completed in a sprint; thus, prioritizing
them would ensure early incremental deliverables. Story points
are assigned to each issue by the stakeholders (development
team) during the planning of each release [1], [20]. Similar to
the issues categorization by priority, the observable values of
story points are also divided into classes. The range value for
each class is devised based on the sample distribution of the
projects used as subjects in our case study. Therefore, these
range values can vary from project to project. Consequently,
we have categorized the effort (in terms of story points)
of issues as S(z), where (0,1,2) represents Classes(z):
Low, M edium, High, respectively.

0 ifz = Low
S(x) =<1 ifx = Medium
2 ifz = High

3) Ranking function: Then, we compute R — rank values —
from P(z) and S(z). These rank values are assigned so that
the issue with higher priority value and least effort required
will be considered first and so on. This is based on the
assumption that the dataset we acquired is pre-discussed and
ultimately assigned after the project stakeholders’ consensus.
Hereby, rank values indicate the level of consideration for an

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:34:38 UTC from IEEE Xplore. Restrictions apply.

issue among others and can vary from range {1,2,3,...,9},
where least being the issue (ranked as 1) to be considered first.
This concept of ranking has been inherited from the work of
Berander et al. [10], where ranking is defined as a numerical
assignment of issues based on an ordinal scale of 1 to n (1
being the highest priority). In order to achieve this, we take the
Cartesian product of P(z) and S(z). In this way, we acquire
a ranked training dataset for the training process.

Pl St

P(z) x S(z) = P2 X 52
p3 3

(P1,51) (2,0) 1

Py, S, 2.1 D

oy (089 _ [D)] _
(P?,;Sg) (0;2) 9

B. The training process

The training process comprises of training the ML model
with specified hyper parameters.® The textual data contained in
the ranked training dataset consists of the title and description
of each issue, which is vectorized by tokenizing the text
and converting it into a sequence of integers. Each integer
represents the index of the token. These vector representations
are later utilized as features in the training of the ML model.
The rank values corresponding to the vector representations
for each issue are used as labels in the training process. Note
that our approach is independent of the training models being
employed. Therefore, the results of the training models may
vary from project to project.

C. The validation process

In the validation process, the performance of the ML
model is evaluated by following standard ML practices in
the literature. First, we employed the k-fold cross-validation
process on our dataset to select the model having the best
performance and avoid over-fitting. The cross-validation pro-
cess is generally performed to attain a good assessment of the
model prediction capability [21], [22]. It is well-understood
that evaluating the model on the same data it was trained on
would result in overoptimistic outcomes [23]. Therefore, the
cross-validation process is meant to reduce this problem by
splitting the data sample into K parts — commonly referred
to as folds. Then, train the model on K — 1 folds and test
on the remaining fold. This process is continued K times.
We further trained the selected model on the entire data once
the assessment is complete and the model with the highest
prediction capability (measured using the overall accuracy) is
selected. Finally, we evaluated it on a held-out validation set
for the corresponding project. We have also carried out the
same process with all projects combined to understand the
generalized aspect of our approach. In all the aforementioned

3Hyper parameters are configurations that can be modified in order to
control the behavior of the machine learning model.

102

steps, we ensured that the data is time-aware, i.e., we used the
past historical data as our train set and the new data as our
held-out validation set.

To evaluate NLP4IP, we have considered top@k accuracy
and MSE as our primary evaluation metrics as they are
commonly employed for multi-class classification problems
[24]-[26]. These metrics are measured using True Positives
(TP), True Negatives (TN), False Positives (FP) — also known
as Type-I errors, and False Negatives (FN) — also referred to
as Type-II errors. The employed metrics are explained below.

Top@k accuracy represents the percentage of how many
predicted ranks are correctly recommended by the model
within top k ranks. The isTrue(n,k) function returns “1” as
output if at least one predicted rank is correct in the top &
predictions made by the model; otherwise, “0” for each issue
n in the set of issues /V.

Z 1sTrue(n, k)
top@k accuracy = 2~]

MSE represents the average error squares, i.e., it shows
the difference between the true rank and the predicted rank.
Mathematically, it can be written as the following equation
where n denotes the number of issues, I'rue denotes the true
rank, and Pred represents the predicted rank.

1 n
MSE = — Y (True — Pred)?
n;(rue red)

IV. ALGORITHM

The NLP4IP approach takes in as input the issues,
i.e., the concatenated title and description [ssue
{issuey....issue, }, categories of priority (expressed as priority
attribute) P = {P....Py}, and categories of effort (expressed
as story points attribute) S = {5)....5,}. As an output,
the NLP4IP approach returns the approximate value obtained
by the ranking function R’(x) against any newly added or
modified issue (issue’). R’ thus represents the final predicted
rank represented as Classes(z): R1 ~ R9. We adopt the
ranking scale of Massey et al. [27] due to the absence of
pairwise comparisons of issues in our proposed approach.

We represent the NLP4IP approach as a pseudo-code in
Algorithm 1. We also perform time-aware random sampling
(H) on the dataset before splitting it into folds (K) to reduce
the model’s bias towards a particular class.

Each iteration (i) in the total number of folds (K) contains
the following processes in the algorithm:

o Line [1-3] - Compute rank (R), generate random samples
(H), and initialize the total number of folds (K)

o Line 4 - Start loop with the total number of iterations
equals K

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:34:38 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 The NLP4IP approach

Input
Issue = {issue;....issue, }
Concatenated Title-Description per issue

P={Py..P,}
Defined categories by Priorities per issue
S = {S;...5:}
Defined categories by Story Points per issue
Output

R'(z) =[R':issue = issue’
Begin

1: R = ComputeRank(P,S)
Compute rank by creating sets of Category P and
Category S
H = RandomSampling(Issue,R)
A random sampling of the dataset based on
computed R
3: K =5 [Total number of folds (train/test sets)]
Divide the sample into 5 folds
for Each fold 7 in K do
Equalize train set classes
5: T; = TrainModel(H)
Train model with specified hyperparameters

6: V; = Validate(T;)

7: if predicted rank = true rank then

8: TruePredictions + 1

9: end if

10: TotalPredictions + 1

11: Compute Precision, Recall, F;-Score per class
12: Compute the average Accuracy and MSE for i
13: end for

14: M = Trained model with high V; accuracy

R'(z) = Z M, (issue’)
n=1

16: return R'(x)
End

e Line 5 - Train (T) ML model on the train set for a given
fold i

o Line 6 - Validate (V) trained model on the test set for a
given fold i

e Line [7-10] - Compute number of true predicted values
by comparing them with true values in the test set

e Line 11 - Compute the Precision, Recall and F;-Score
measure for each class

o Line 12 - Compute the average Accuracy and MSE for a
given fold i

e Line 13 - End loop

o Line [14-16] - Return the approximate rank value gen-
erated by the selected model corresponding to the newly
added or modified issue (issue’)

103

V. BENCHMARK STUDY

We performed a benchmark study comprising 19 different
projects obtained from six JIRA repositories to evaluate our
approach. The projects were selected based on predefined
project selection criteria explained in the following subsection.

A. Preliminaries

There is a pipeline of processes that are prerequisites for this
study. First, we ensure through the definition of criteria that
only relevant projects evolved over a certain period of time
are included in the study. Then, we employ common machine
learning processes, such as data extraction and data prepro-
cessing, which are necessary to build a high-performance
machine learning model.

1) Project selection criteria: We have selected projects
from six major repositories using the JIRA issue tracking
software. These repositories include: apache*, appcelerator,
jboss®, sonatype’, talendforge®, and mongodb®. Initially, 44
projects were selected based on our criterion C1 (listed below),
which were then further scrutinized. A total of 19 projects
were eventually included in the final pool. Overall, this study
contains 29,698 issues. Following is the project selection
criteria:

C1: The project must have assigned priority and story points
attributes.

Rationale: Both of these attributes are necessary for
the NLP4IP approach as they demonstrate the priority
and effort required to complete the issues. Therefore, we
are only considering issues assigned with both of these
attributes beforehand.

The project must have a minimum of 400 issues and 10
sprints.

Rationale: We are interested in only those projects,
which have a significantly large number of issues and
evolving over a longer period of time. We fix a threshold
value for issues and sprints as 400 and 10, respectively.
The primary language used in the project must be En-
glish.

Rationale: We are using the English language corpora
in our study; thus, we opted for projects having primary
language as English.

The project type must be “Software".

Rationale: We are not interested in projects other than
the type Software such as Business or Service Desk.

2) Data extraction process: To acquire relevant data, we
have designed a data extraction process tailored to the scope
of this study. The data extraction process starts with using
the REST API provided by the JIRA issue tracking software.
The REST API provides endpoints for extracting the desired
data attributes within a project. We have developed a custom

C2:

C3:

C4:

“https://issues.apache.org/jira
Shttps://jira.appcelerator.org/
Shttps://issues.jboss.org/
"https://issues.sonatype.org/
8https://jira.talendforge.org/
“https://jira.mongodb.org/

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:34:38 UTC from IEEE Xplore. Restrictions apply.

application in C# to extract the issues and their specified
attributes for a particular project. The data is then transformed
into the required format. An example of an issue (user story)
containing the attributes extracted from the projects is shown
in Fig. 3.

Mesos / MESOS-6405

[Benchmark call ingestion path on the Mesos master.

v Details

Improvement

Critical

Mesosphere Sprint 45

v Description
Dario Rexin reported on the user mailing list that there seems to be a significant regression in performance on the call
wrt to the scheduler driver (vO API).

We should create a benchmark to first get a sense of the numbers and then go about fixing the performance issues.

Fig. 3: An example of attributes extracted from each issue,
where T'itle and Description are highlighted in green and
Priority and Storypoints in red.

3) Data preprocessing: We have ensured the data quality
of our dataset by performing data preprocessing, which com-
prised removing the unnecessary words — called stop words —
from the title and description of each issue using the English
stop words corpus provided by NLTK (Natural Language
Toolkit).'” The removal of stop words is essential to increase
the performance of the model and to ensure that only those
words are included, which helps to identify the context of a
sentence [28]. Moreover, we have also removed various HTML
tags from the text for similar reasons. The final dataset has
been made publicly available and described more in detail in
Section V-F.

B. Study design

To compare the proposed approach, the benchmark study is
comprised of 9 different ML models. This includes 1) Decision
trees (DT), 2) K-nearest neighbour (KNN), 3) Support vector
machine (SVM), 4) Logistic regression (LR), 5) Naive bayes
(NB), 6) Random forest (RF), 7) XGBoost, 8) FastText, and
9) Long short-term memory (LSTM). Note that we chose
these models as they have been widely used to address text
classification problems and have shown notable performance
in the past [13], [29]-[31].

As a part of the benchmark study, Algorithm 1 was im-
plemented in python scripts (one for each ML model) and
executed by providing the dataset for each project individually
and then combined. To elaborate, we first distinctly evaluated
each model on the single corresponding project’s held-out val-
idation set. Then, to illustrate the ability of NLP4IP on unseen
projects, we evaluated NLP4IP in a cross-project setting where
data samples from n — 1 projects have been employed as

1Ohttps://www.nltk.org

104

training data while leaving data samples of 1 project out as
testing data. This resulted in 19 iterations of the training and
validation process, evaluating each project one by one. Lastly,
to further determine our approach’s generalizability, we trained
the model based on the data accumulated collectively from all
projects while randomly separating this held-out validation set
and performed the evaluation on the combined and randomized
held-out validation set.

While splitting the dataset between the train set and the
validation set, we ensured that the data is time-aware, i.e.,
training on past issues and validation on newer ones. Before
the training, we also set the story point range values (explained
in Section III-A2) for each project based on the sample issues
distribution. For instance, we categorized the middle majority
samples as Medium and the rest as Low and High for a project
with the bell-curve distribution. We kept the lower majority
samples as Medium and the rest as Low and High for a project
with exponential distribution.

C. Results

The results obtained after the learning process are twofold.
First, we report on the MSE values of each model acquired
from performing k-fold cross-validation on the dataset. Sec-
ond, we report the benchmark study results where NLP4IP
is applied in an individual project setting and a cross-project
setting. Fig. 4 shows the boxplot illustrating the k-fold cross-
validation results (in terms of MSE) of the ML models on
the combined dataset employed in this study. SVM emerged
as the highest performing model with an MSE of 3.7802
(std=2.1323), whereas NB performed the least with an MSE
of 22.9444 (std=1.4351).

25

=

20

15

MSE

10

’l’
T

v

Lk

DT

g

XGBoost

o
o i’
SVM LR LST™ NB

Fig. 4: k-fold cross-validation results (low is better)

fasttext KNN RF

Table I reports the results of NLP4IP when applied in an
individual project setting. The first column “Project”, reports
the name of the projects employed under study. The rest of
the columns report the top@3 accuracy and MSE values of
the respective ML models. For each project, the entries shown
in bold fonts indicate the best MSE values (highlighted in
green) with the difference of 0.1 and the best top@3 values
(highlighted in blue) with the difference of 0.01.

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:34:38 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Results of the validation process (individual project setting)

Project DT Fasttext KNN SVM LR LSTM NB RF XGBoost
top@3 | MSE top@3 | MSE top@3 | MSE top@3 | MSE top@3 | MSE top@3 | MSE top@3 | MSE top@3 | MSE top@3 | MSE

APSTUD 0.62 1 17.66 0.42 1 12.02 0.49 1 13.66 0.46 1 15.49 0.40 | 14.46 0.44 1 13.50 0.441 7.65 0.41114.83 0.50 I 14.25
DOCS 0.66 | 3.10 0.66 | 3.29 0.72'1 3.18 0731 3.13 0.69 1 5.36 0.79 1 4.62 0.21 1 11.06 0.73 1 3.58 0.77 1 2.91
EVG 0.97 1 0.72 0.811 0.89 0911 0.78 0.98 1 0.80 0971 1.29 0.87 1 0.93 0.151 2.77 098 | 1.11 0.98 | 0.80
FH 0.80 I 2.21 0.80 1 1.82 0.80 1 2.27 0921 255 0911 2.66 0821 1.50 0.12 1 15.79 0.91 1 2.50 0.92 1 2.51
IJBDS 0.69 1 2.68 0.79 1 3.23 0.64 1 3.83 0.721 3.27 0.58 1 5.01 0.64 1 522 0.12112.82 0.73 1 2.41 0.68 | 2.52
JBIDE 0.69 1 3.38 0.77 1 4.01 0.511 391 0.67 1 3.31 0.591 6.34 0.70 I 3.36 0.15 1 16.46 0.69 | 3.85 0.67 I 3.07
KEYCLOAK 0.79 1 3.21 0.78 1 3.84 0.70 I 3.73 0.76 1 391 0.69 1 4.49 0.82 1 2.41 0.17 1 5.28 0.76 1 3.36 0.78 | 3.32
MESOS 0.73 1 2.91 0.75 1 3.27 0.621 3.13 0.741 3.14 0.66 | 5.03 0.70 | 3.41 0.15112.73 0.751 3.16 0.73 1 3.00
NEXUS 0.571 5.11 0.74 1 3.64 0471 4.15 0.561 5.0 0.551 6.22 0.64 1 3.81 0311 9.62 0.64 1 3.78 0.61 | 3.66
SERVER 0911 1.70 0.751 1.35 0.841 1.70 0961 2.25 0.87 1 2.95 0.80 I 1.49 0.10 1 7.36 0.98 1 1.83 0.98 | 1.71
TDP 0.58 1 4.59 0.741 5.18 0.50 1 9.11 0.591 5.20 0.521 9.79 0.511 590 0.30 1 29.02 0.56 1 9.11 0.59 | 4.96
TDQ 0.49 1 8.39 0.721 9.33 0471 9.37 0.58 1 9.68 0.51110.17 0.58 1 6.60 0.32113.19 0.49 1 9.87 0.57 110.37
TESB 0.48 1 5.29 0.711 4.07 0391 5.24 0.521 4.76 0451 5.88 0.59 1 5.14 0.15113.35 0451 4.92 0.511 5.08
THORN 0.69 1 3.03 0.711 3.60 0.651 3.78 0.67 1 4.05 0.541 6.33 0.57 1 4.04 0.16 1 4.99 0.69 | 2.77 0.73 1 2.85
TIDOC 0.70 I 7.99 0.711 5.96 0491 7.10 0.621 7.87 0.511 8.59 0.69 1 8.03 0.13136.97 0.621 7.62 0.70 1 7.15
TIMOB 0.571 9.32 0.68 1 10.71 0.43 1 10.66 0.56 1 9.85 0.50 1 11.27 0.591 9.03 0.27127.22 0.56 1 11.08 0.57 110.37
TISTUD 0.73 1 5.06 0.68 | 6.67 0.631 5.73 0.76 1 4.86 0.67 1 7.49 0.66 1 7.30 0.16 1 32.99 0.74 1 5.55 0.74 1 4.95
WINDUP 0.74 1 2.90 0.68 1 1.55 0.621 249 0.86 1 2.37 0.70 | 5.45 0.611 2.76 0.06 1 9.96 0861 1.97 0.90 I 1.75
WT 0.83 1 1.60 0.69 1 1.58 0751 1.71 0.86 1 1.49 0.78 1 2.72 0.80 1 2.04 0321 9.87 0.87 1 1.75 0.86 1 1.53

Top model(s) (MSE = ~ 0.1, top@3 = ~ 0.01) for each project emphasized

The results show that XGBoost appeared to be the best-
performing model. It has performed better on 8 projects (con-
sidering both top@3 and MSE metrics) compared to the rest
of the models. FastText (second best), on the other hand, has
dominated individual projects (in terms of top@3 metric) due
to its efficient learning of word representations by converting
textual features into character n-grams. DT and LSTM are
following in terms of performance with a slight difference
in their accuracy. Apparently, we can see that NB has shown
the least performance implying its inability to capture features
from an imbalanced dataset.

As further can be seen in Table I, there are two projects
(SERVER and EVG) with the highest top@3 accuracy and
lowest MSE, indicating the fact that the model has successfully
predicted the values due to the training on majority samples
of classes falling under rank 4, 5, and 6. This implies that
the unequal label distribution has a significant impact on the
model’s bias, which, in turn, results in fewer class predictions
on most of the samples. Table II shows the results obtained
by applying NLP4IP in a cross-project setting. The evaluation
results for each project are based on the aforementioned n — 1
strategy. These results demonstrate that SVM appeared to
be dominant over the rest of the models in terms of the
lowest MSE values. Overall, the XGBoost model performed
with an accuracy of 81% with an MSE of 2.52 (slightly
higher than SVM) when evaluated on a dataset of all projects
combined. However, due to the imbalanced nature of the
dataset, XGBoost appears to be the most befitting model as
it provides a range of parameters to fine-tune the model on a
given dataset. Moreover, the risk of overfitting associated with
the XGBoost model was overcome by performing k-fold cross-
validation elaborated in the aforementioned Section III-C.

D. Discussion and implications

The practical implication of NLP4IP is discussed in this
section. Based on the results obtained from the individual

project setting, the reported MSE values for each model
indicate how far the predicted rank is from the true rank. For
instance, in this study, the MSE value of 2.5 for a project
implies that if the true rank of an issue is “4”, then on
average, the predicted rank could vary from 3-5. Thus, the
lower the MSE value is, the better performance a model
has. However, for some projects (APSTUD, TDQ, TIMOB,
and TISTUD), we observed considerably high MSE values
(> 6.0), which indicate that the disparity among the ranks
recommended by the models and the true ranks is high. To
better understand the cause, we performed K-means clustering
to group issues with similar textual features and observed their
variance. Apparently, the issues with the same cluster had
different classes, also known as class overlap, which resulted
in the worse performance of models on these projects. Further
studies are required to investigate the potential solutions to
overcome this problem.

The results obtained from the cross-project setting indicate
that SVM outperformed other models except for XGBoost,
which had slightly higher MSE but better accuracy. We
also trained and validated the model on the entire dataset
(combining all projects), which showed the performance of
SVM and XGBoost on par with each other but below the per-
project learning results. We observed that the text does not
correlate with the effort and priority attributes as they might be
project progress/situation dependent, which, in turn, suggests
that cross-project learning should be used only when there is
insufficient data available in a project to conduct per-project
learning.

Summarizing results, among all the ML models employed
in this study, XGBoost was able to capture the features more
accurately and outperformed the rest due to its ensemble
framework based on decision trees. In comparison to DT —
the third-best — XGBoost complements decision trees with a
gradient boosting algorithm to strengthen the prediction power
of the model further. SVM follows XGBoost in terms of

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:34:38 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Results of the validation process (cross-project setting)

Project DT Fasttext KNN SVM LR LST™M NB RF XGBoost
top@3 | MSE top@3 | MSE top@3 | MSE top@3 | MSE top@3 | MSE top@3 | MSE top@3 | MSE top@3 | MSE top@3 | MSE
APSTUD 0.34 18.03 0.43111.53 0.30 1 10.13 0.29 | 7.56 0.30 1 8.10 0.37 1 10.47 0.28 1 21.89 0.34110.25 0.3317.85
DOCS 0.70 1 291 0481 547 0.46 1 5.59 0.70 I 2.69 0.64 | 3.83 0.54 1 5.56 0.13119.87 0.451 6.55 0.68 1 3.60
EVG 0.69 13.02 0.571 3.17 0481 5.70 0.47 1 2.87 0.64 | 3.05 0.59 1 3.73 0.04 1 12.84 0.56 1 4.32 0.68 1 3.00
FH 0.84 13.74 0.571 5.05 0.56 1 4.87 0.90 | 2.76 0.86 | 2.67 0.61 | 5.31 0.34116.30 0.69 | 4.86 0.83 12.78
JBDS 0.7113.33 0.571 6.08 0491 5.70 0.74 1 3.06 0.70 | 3.74 0.60 I 6.10 0.19 122.20 0.60 | 6.11 0.73 13.51
JBIDE 0.7213.17 0.571 5.17 0.46 1 5.64 0.74 1 2.77 0.70 | 3.65 0.57 1 6.27 0.26 1 19.47 0.551 6.51 0.68 | 3.62
KEYCLOAK 0.80 1 2.53 0.58 1 4.57 0.531 495 0.81 1 2.26 0.78 1 2.63 0.64 1 5.34 0.18119.24 0.64 1 5.24 0.81 12.81
MESOS 0.77 1 2.84 0.58 1 4.32 0.50 I 5.37 0.79 1 2.78 0.73 1 3.36 0.55 1 5.47 0.45117.75 0.59 1 6.00 0.7513.25
NEXUS 0.61 15.06 0.58 1 4.98 0461 7.18 0.67 | 4.19 0.59 15.11 0.551 5.74 0.32113.25 0471 7.59 0.61 1 4.08
SERVER 0.87 1237 0.591 2.78 0.56 1 4.35 0.96 | 2.15 0.85 1 2.56 0.76 1 2.68 0.37 115.02 0.60 | 5.51 0.88 12.23
TDP 0.3019.75 0.58111.17 0.38 1 11.92 0.3119.55 0.3119.03 0.40 | 8.94 0.41112.20 0.33111.21 0.3117.89
TDQ 0.3219.34 0.56 1 8.85 0.40 1 11.26 0.3318.74 0.3218.73 0451 8.59 041111.73 0.36 1 10.39 0.3417.75
TESB 0.5317.20 0.56 1 6.55 0.47 1 8.61 0.56 1 7.04 0.5116.72 0.50 I 6.74 0.48111.22 0.451 9.05 0.51 16.57
THORN 0.67 1 4.40 0.56 1 5.48 0471 594 0.73 1 3.56 0.66 | 4.20 0.52 1 6.65 0.36 1 18.13 0.50 I 6.93 0.69 1 3.62
TIDOC 0.36 1 6.07 0.56 1 9.19 0.30 1 8.20 0.3115.86 0.3217.61 0.49 110.17 0.15133.29 0.38 1 9.11 0.4117.01
TIMOB 0.24 1590 0.551 9.01 0.26 1 855 0.2215.71 0.26 | 8.20 0.43 1 10.50 0.21 128.48 0.39 1 8.93 0.28 17.15
TISTUD 0.30 1528 0.541 9.81 0.24 1 8.23 0.26 | 5.09 0.27 16.99 0.46 1 10.63 0.13 1 34.50 0.37 110.23 0.33 17.07
WINDUP 0.80 13.77 0.541 5.13 0.551 5.66 0.84 | 3.36 0.81 | 3.08 0.59 | 4.48 0.33115.77 0.68 | 5.08 0.80 1 3.11
WT 0.64 13.77 0.551 343 0.511 6.70 0.87 | 3.85 0.68 | 4.05 0.64 1 4.31 0.50 I 6.96 0.521 5.78 0.78 1 3.06
ALL 0.76 1 2.90 0.711 3.70 0.631 5.08 0.73 1 2.23 0.77 12.96 0.72 1 5.34 0.18 1 21.32 0.70 I 5.73 0.81 12.52

Top model(s) (MSE = ~ 0.1, top@3 = ~ 0.01) for each project emphasized

lowest MSE, which explains its high applicability in multi-
class text classification. Since a specific architecture for the
LSTM model is followed in this study, we can further conclude
that despite the low performance of LSTM in a cross-project
setting, further fine-tuning of the model and better model ar-
chitecture could yield a significant increase in its performance.

NLP4IP can be utilized as a pre-assigned single crite-
rion ranking technique. The ability to easily deriving the
ranked dataset from the pre-assigned attributes within projects
facilitates learning, thus improving the performance of the
prioritization process. It also makes the NLP4IP domain-
independent and suitable for any project with pre-assigned
priority and effort. The results obtained from the benchmark
study suggest that NLP4IP performs better when applied in
an individual project setting. To implement NLP4IP on a new
project, it is preferred that the project has a significant number
of issues and the textual features of issues are distinguishable.
On the contrary, if only limited data is available, cross-project
learning could yield better results.

The presented benchmark study helps researchers analyze
the comparable performance of the models, especially in
large-sized projects. Moreover, our approach — NLP4IP —
allows practitioners to get early warnings on newly added or
modified issues by generating an approximated rank, which
helps them prioritize issues more effectively. For instance, an
early generated rank such as “1” against a corresponding newly
created issue would indicate that the issue is expected to have
high priority and low effort. Knowing this beforehand helps
practitioners decide whether the issue should be considered in
the upcoming sprint, thus alerting them on time.

E. Prototype implementation

To demonstrate the applicability of our approach, we have
developed the Rank indicator plug-in as a recommendation
tool for JIRA. The plug-in forecasts the rank of every newly

106

added or modified issue. The source code of the prototype is
publicly available at Github'! and its outcome (highlighted in
the green box) is shown in Fig. 5. The plug-in consumes the
trained model to predict the rank of incoming issues and is
readily available for exploitation.

L4 update app logo favicon
Edil Comment Assign More ~
Details People
&3 story Unassigned
Labe None adamin
e 0
Description - o 2 S e
Dates
Attachments
Rank Indicator
Activity Rank 8/9 (Medium Pricrity - High Effort)

History A«

Comments

Work Log

There are no comments yet on this issue

Fig. 5: Plug-in screenshot

E Publicly available dataset

One of the novels and major contributions of this paper
is the provision of a gold standard dataset'” to facilitate
the undertaking of further research on applied NLP tech-
niques for issues or requirements prioritization. The pro-
vided dataset contains two folders naming ‘“withChange-
History” and “withoutChangeHistory”. Both folders contain

https://github.com/jku-isse/RankIndicator
2https://github.com/jku-isse/RankIndicator/tree/master/Dataset

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:34:38 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Dataset attributes

Attribute Type Attributes Description
ProjectName Project’s name
Key JIRA issue key
Type Issue Type
Categorical Created Issue Creation date
LastUpdatedStatus Last updated status
LastUpdatedStatusDate Date of last updated status
Priority Priority for each issue
Storypoint Story points
NumWatchers Number of watchers
NumComments Number of comments
Numeric NumlssueLinks Number of links to other
issues
NumAffectedVersions Number of affected versions
NumChangeHistory ~ Number of changes made for
each issue
NumFix Versions Number of fixed versions
Textual title_desc Concatenated title and
description of each issue
Derived P, S, R Derived columns from

Section 111-A

.csv files for each project. These files comprise cate-
gorical, textual, and derived attributes. For example, the
folder named “withoutChangeHistory” contains .csv files
for each project, excluding the attributes obtained from
the change history of issues, i.e., ProjectName, Key,
title_desc, Created, Priority, Storypoint,
P, S, R. Table III describes the dataset attributes.

We further plotted a histogram showing the derived rank
corresponding to the issues to understand the distribution
better. Fig. 6 shows the rank distribution across the number of
samples in the dataset. As can be seen, due to the imbalanced
nature of the dataset, we meticulously split our dataset into
training and validation sets. As a result, we maintained a
similar ratio of classes among the sets when deriving ranked
training data before the training process for each project.

o

rojectName
TIMOB
TISTUD
MESOS
TIDOC
KEYCLOAK
FH
WINDUP
JBDS
DO
JBIDE
NEXUS
DOCs
TESB
TP
APSTUD
SERVER
THORN
EVG

WT

‘|||'| »

2000

L]

1000

gooopopoonooEnoOEOD

W|

Rank

Fig. 6: Dataset rank distribution

A large corpus of dataset like this could help researchers as
a valuable resource to conduct further research on issues prior-
itization and selection using other natural language processing

107

or deep learning techniques. Also, the provided dataset could
be instrumental in the area of cost and effort estimation in
agile software development, e.g., as shown by Choetkiertikul
et al. [20], who performed story points estimation using a
deep learning model trained on textual requirements. The
provided dataset could also be beneficial in building priority-
based recommendation systems for incoming issues.

Further implications of the dataset could be strengthening
the knowledge building process, addressing the challenge
of building domain ontology models using textual require-
ments [5] and understanding the “template sentence structure”
of the issues that specifically belong to the agile software
development. Moreover, it can also be immensely beneficial
in emotional software engineering and sentiment analysis
studies [32], where we try to evaluate the emotional impact
(presence/absence of emotions in text) of issues on priority and
story points. This ultimately leads to the evaluation of project
velocity and possibly allows project managers to better orient
their issues or requirements elicitation process.

VI. THREATS TO VALIDITY
A. External validity

The external validity threat can influence the generalizability
of results due to the insufficient amount of data employed in
a study. In order to overcome this external threat, we have
gathered a relatively large dataset comprising of 19 projects
obtained from 6 different repositories. Moreover, the k-fold
cross-validation process also supports the conclusion of the
generality of our model in similar contexts.

B. Internal validity

The internal validity threat can occur due to a poor research
methodology or a spurious apprehension of the research pro-
tocol. In order to overcome this threat, we have developed a
custom application that automatically extracts and formats the
required data acquired from the Rest API provided by JIRA.
Furthermore, the dataset that we have used to evaluate our
approach is entirely based on real projects that evolved over
a certain time period, thus reducing any internal threat to the
validity of this study.

C. Construct validity

This study is prone to construct validity as we are aug-
menting the priority attribute with story points in order to
prioritize issues. However, as aforementioned, story points can
be utilized as a metric to measure effort and as a rule of
thumb, an issue with a priority value x with an effort value
y is prioritized over the issue with a priority value = and an
effort value y’, where 3’ > y. Thus we believe that the two
attributes (priority and story points) utilized in our approach
are adequate to prioritize issues.

VII. CONCLUSION

In this paper, we have presented the NLP4IP approach
for issues prioritization based on natural language process-
ing. NLP4IP allows project managers to better orient their

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:34:38 UTC from IEEE Xplore. Restrictions apply.

sprint planning ahead of time by knowing the approximate
rank for each newly added or modified issue. The use of
NLP4IP is recommended for projects with readily available
sufficient data. However, in case of data scarcity, cross-project
learning can be employed. The ranking function of NLP4IP
is devised by acquiring the priority attribute in combination
with the unit of measuring effort (in terms of story points)
for each issue given by the stakeholders. Moreover, we also
conducted a state-of-the-art benchmark study to compare the
performance of various ML models, which shows that NLP4IP
can predict ranks for unseen issues with an average top@3
accuracy of 81% and MSE of 2.5 with the XGBoost model.
Lastly, we made the dataset publicly available for the research
community.

In the future, we intend to investigate the relevance and
closeness of rank values within the k prediction(s) made by
the model. For instance, a prediction of (k=3) “7, 8, 9” should
be more relevant than a prediction of “1, 5, 9". In addition, we
plan to employ pre-trained models and sentence embeddings
from modern models such as BERT to further improve the

capturing of domain knowledge and ontology of the model.
REFERENCES

[1] M. Cohn, Agile Estimating and Planning.
USA: Prentice Hall PTR, 2005.
M. Daneva and A. Herrmann, “Requirements Prioritization Based on
Benefit and Cost Prediction : A Method Classification Framework,” in
2008 34th Euromicro Conference Software Engineering and Advanced
Applications. Parma: 1EEE, 2008, pp. 240-247.
7. Racheva, M. Daneva, K. Sikkel, and A. Herrmann, “Do we Know
Enough about Requirements Prioritization in Agile Projects : Insights
from a Case Study,” in 2010 18th IEEE International Requirements
Engineering Conference. 1EEE, 2010, pp. 147-156.
M. Daneva, E. V. D. Veen, C. Amrit, S. Ghaisas, K. Sikkel, R. Kumar,
N. Ajmeri, U. Ramteerthkar, and R. Wieringa, “The Journal of Systems
and Software Agile requirements prioritization in large-scale outsourced
system projects : An empirical study,” The Journal of Systems &
Software, vol. 86, no. 5, pp. 1333-1353, 2013. |Online]. Available:
http://dx.doi.org/10.1016/j.jss.2012.12.046
M. A. A. Andres Arellano, Edward Carney, “Natural Language Pro-
cessing of Textual Requirements,” Proceedings of the Workshops, 19th
International Conference Conference on Automated Software Engineer-
ing, vol. 9, no. 3, pp. 93-97, 2015.
R. Sharma, J. Bhatia, and K. K. Biswas, “Machine learning for con-
stituency test of coordinating conjunctions in requirements specifica-
tions,” in International Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering. ACM, 2014, pp. 25-31.
S. Shafiq, A. Mashkoor, C. Mayr-Dorn, and A. Egyed, “TaskAllocator:
A Recommendation Approach for Role-based Tasks Allocation in Agile
Software Development,” in 2021 IEEE/ACM Joint 15th International
Conference on Software and System Processes (ICSSP) and 16th
ACM/IEEE International Conference on Global Software Engineering
(ICGSE). 1EEE, 2021, pp. 39-49.
R. M. Coyotl-morales and L. Villasefior-pineda, “Authorship Attribution
Using Word Sequences,” in Iberoamerican Congress on Pattern Recog-
nition. Berlin: Springer Berlin Heidelberg, 2006, pp. 844-853.
K. Logue, K. Mcdaid, and D. Greer, “Allowing for Task Uncertainties
and Dependencies in Agile Release Planning,” in Proceedings Software
Measurement European Forum (SMEF), 2007, pp. 275-284.
P. Berander and A. Andrews, Requirements Prioritization.
Springer, Berlin, Heidelberg, 2005.
A. Perini, A. Susi, and P. Avesani, “A Machine Learning Approach to
Software Requirements Prioritization,” IEEE Transactions on Software
Engineering, vol. 39, no. 4, pp. 445-461, apr 2013. [Online|. Available:
http://ieeexplore.ieee.org/document/6249686/

Upper Saddle River, NJ,

(5]

L6l

17

—

110] Berlin:

L11]

108

[12]

[13]

[14]

[15]

L16]

[17]

L18]

[19]
[20]

[21]

[22]

(23]

[24]

125]

[26]

[27]

(28]

[29]

[30]

[31]

132]

P. Tonella, A. Susi, and FE Palma, “Interactive requirements
prioritization using a genetic algorithm,” Information and Software
Technology, vol. 55, no. 1, pp. 173-187, 2013. |Online|. Available:
http://dx.doi.org/10.1016/j.infsof.2012.07.003

J. Kanwal and O. Magbool, “Bug prioritization to facilitate bug report
triage,” Journal of Computer Science and Technology, vol. 27, no. 2,
pp- 397412, 2012.

D. Greer and G. Ruhe, “Software release planning: An evolutionary and
iterative approach,” Information and Software Technology, vol. 46, no. 4,
pp. 243-253, 2004.

J. McZara, S. Sarkani, T. Holzer, and T. Eveleigh, “Software require-
ments prioritization and selection using linguistic tools and constraint
solvers—a controlled experiment,” Empirical Software Engineering,
vol. 20, no. 6, pp. 1721-1761, 2015.

P. Achimugu, A. Selamat, R. Ibrahim, and M. N. R. Mahrin, “A
systematic literature review of software requirements prioritization
research,” Information and Software Technology, vol. 56, no. 6, pp.
568-585, 2014. |Online|. Available: http://dx.doi.org/10.1016/j.infsof.
2014.02.001

E. A. Bukhsh, Z. A. Bukhsh, and M. Daneva, “A systematic
literature review on requirement prioritization techniques and their
empirical evaluation,” Computer Standards and Interfaces, vol. 69,
no. November 2019, p. 103389, 2020. |Online]. Available: https:
/ldoi.org/10.1016/.cs1.2019.103389

M. Trkman, J. Mendling, and M. Krisper, “Using business process
models to better understand the dependencies among user stories,”
Information and Software Technology, vol. 71, pp. 58-76, 2016.
|Online|. Available: http://dx.doi.org/10.1016/j.infsof.2015.10.006

S. H. Khandkar, “Open coding,” University of Calgary, Tech. Rep., 2009.
M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, and
T. Menzies, “A Deep Learning Model for Estimating Story Points,”
IEEE Transactions on Software Engineering, vol. 45, no. 7, pp. 637-
656, 2019.

S. Geisser, “The Predictive Sample Reuse Method with Applications,”
Journal of the American statistical Association, vol. 70, no. 350, pp.
320-328, 1975.

M. Stone, “Cross-Validatory Choice and Assessment of Statistical Pre-
dictions,” Journal of the Royal Statistical Society, vol. 36, no. 2, pp.
111-147, 1973.

S. C. Larson, “The shrinkage of the coefficient of multiple correlation.”
Journal of Educational Psychology, vol. 22, no. 1, pp. 45-55, 1931.
M. Sokolova and G. Lapalme, “A systematic analysis of performance
measures for classification tasks,” Information Processing and
Management, vol. 45, no. 4, pp. 427-437, 2009. |Online]. Available:
http://dx.doi.org/10.1016/j.ipm.2009.03.002

Y. Yu, H. Wang, G. Yin, and C. X. Ling, “Who should review this pull-
request: Reviewer recommendation to expedite crowd collaboration,”
Proceedings - Asia-Pacific Software Engineering Conference, APSEC,
vol. 1, pp. 335-342, 2014.

J. Jiang, Y. Yang, J. He, X. Blanc, and L. Zhang, “Who should
comment on this pull request? Analyzing attributes for more accurate
commenter recommendation in pull-based development,” Information
and Software Technology, vol. 84, pp. 48—62, 2017. |Online|. Available:
http://dx.doi.org/10.1016/j.infsof.2016.10.006

A. K. Massey, P. N. Otto, L. J. Hayward, and A. I. Anto, “Evaluat-
ing existing security and privacy requirements for legal compliance,”
Requirements engineering, vol. 15, no. 1, pp. 119-137, 2010.

K. V. Ghag and K. Shah, “Comparative analysis of effect of stopwords
removal on sentiment classification,” in /EEE International Conference
on Computer Communication and Control, IC4 2015. 1EEE, 2016, pp.
2-1.

M. Alenezi and S. Banitaan, “Bug reports prioritization: Which features
and classifier to use?” in Proceedings - 2013 12th International Con-
ference on Machine Learning and Applications, ICMLA 2013, vol. 2.
IEEE, 2013, pp. 112-116.

1. Scholtes, M. S. Zanetti, C. J. Tessone, and F. Schweitzer, “Cat-
egorizing bugs with social networks: A case study on four open
source software communities,” in 2013 35th International Conference
on Software Engineering (ICSE), 2013, pp. 1032-1041.

R. Sepahvand, R. Akbari, and S. Hashemi, “Predicting the bug fixing
time using word embedding and deep long short term memories,” IET
Software, vol. 14, no. 3, pp. 203-212, 2020.

N. Novielli, “Sentiment and Emotion in Software Engineering,” I[EEE
Software, vol. 36, no. August, pp. 6-23, 2019.

Authorized licensed use limited to: Universitaet Linz. Downloaded on April 28,2022 at 11:34:38 UTC from IEEE Xplore. Restrictions apply.

